ISSN 1600-5368

6-(4-Chlorophenyl)-9,9-dimethyl-3,7dioxo-2,3,4,6,7,8,9,10-octahydro-1*H*pyrimido[1,2-a]quinoline-5-carbonitrile

Dong-Qin Chen,^a Chun-Mei Li^b and Shu-Jiang Tu^{b*}

^aXuzhou Medical College, Department of Chemistry, Xuzhou 221006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China Correspondence e-mail: laotu2001@263.net

Received 27 August 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.064; wR factor = 0.223; data-to-parameter ratio = 13.7.

The title compound, $C_{21}H_{20}ClN_3O_2$, was synthesized by the reaction of 4-chlorobenzaldehyde and 3-(5,5-dimethyl-3-oxo-cyclohex-1-enylamino)propanoic acid with malononitrile in ethylene glycol under microwave irradiation. The dihydropyridine ring has a boat conformation. The pyrimidine ring adopts a screw-boat conformation and the cyclohexene ring is in an envelope conformation. In the crystalline state, centrosymmetrically related molecules form dimeric pairs through $N-H\cdots N$ hydrogen bonding. Weak $C-H\cdots O$ hydrogen bonds are also observed.

Related literature

For general background, see: Awouters *et al.* (1986); Matsutani & Mizushima (1989); Smith *et al.* (1995); Yanagihara *et al.* (1988).

Experimental

Crystal data $C_{21}H_{20}CIN_{3}O_{2}$ $M_{r} = 381.85$

Monoclinic, $P2_1/c$ a = 10.378 (5) Å

CN

NH

b = 10.131 (5) Å c = 18.143 (9) Å $\beta = 97.406 (8)^{\circ}$ $V = 1891.6 (17) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector	9514 measured reflections
diffractometer	3340 independent reflections
Absorption correction: multi-scan	1323 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.086$
$T_{\min} = 0.946, T_{\max} = 0.969$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	244 parameters
$wR(F^2) = 0.223$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
3340 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	<i>D</i> -H	$\cdots A$
$N2 - H2 \cdots N3^{i}$ $C12 - H12B \cdots O2^{ii}$ $C16 - H16 \cdots O1^{iii}$	0.86 0.97 0.93	2.24 2.29 2.57	3.059 (7) 3.005 (8) 3.480 (7)	159 130 167	
Symmetry codes: (i) -x, -y + 1, -z + 2.	-x + 1, -y	+2, -z+2;	(ii) $-x + 1, y - $	$\frac{1}{2}, -z + \frac{3}{2};$	(iii)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK 2006033) and the Six Kinds of Professional Elite Foundation of Jiangsu Province (grant No. 06-A-039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2454).

References

- Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., Van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.
- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Matsutani, S. & Mizushima, Y. (1989). Eur. Patent Appl. EP 89-102635 19890216.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Smith, R. L., Barrent, R. J. & Sanders-Bush, E. (1995). J. Pharmacol. Exp. Ther. 275, 1050–1057.
- Yanagihara, Y., Kasai, H., Kawashima, T. & Shida, T. (1988). Jpn. J. Pharmacol. 48, 91-101.

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.14$ mm

 $\mu = 0.22 \text{ mm}^{-1}$

T = 298 (2) K

Acta Cryst. (2007). E63, o3931 [doi:10.1107/S1600536807042389]

6-(4-Chlorophenyl)-9,9-dimethyl-3,7-dioxo-2,3,4,6,7,8,9,10-octahydro-1*H*-pyrimido[1,2-*a*]quinoline-5-carbonitrile

D.-Q. Chen, C.-M. Li and S.-J. Tu

Comment

Pyrido[1,2-*a*]pyrimidine core has been successfully used a motif for the development of biologically interesting molecules, including pirenperone, a tranquilizer (Smith *et al.*, 1995), barmastine, an antiallergic agent (Awouters *et al.*, 1986), an antialcerative agent (Matsutani *et al.*, 1989), and pemirolast, an antiasthmatic agent (Yanagihara *et al.*, 1988). Pyrimido[1,2-*a*]quinoline belongs to a class of compounds which are special not only because of their interesting chemical and physical properties, but also due to their immense utility in the pharmaceutical industries. We report here the crystal structure of the title compound, a pyrimido[1,2-*a*]quinoline derivative.

In the title molecule, the dihydropyridine ring is planar, with a maximum deviation of 0.039 (4) Å for atom C4 (Fig. 1). The pyrimidine ring adopts a screw-boat conformation, with atoms C11 and C10 deviating from the C12/N1/C1/N2 plane by 0.876 (10) and 0.451 (10) Å (Fig. 1). The cyclohexene ring adopts an envelope conformation, with atom C7 deviating by 0.620 (8) Å from the C4/C5/C6/C8/C9 plane. The C1—C4/C9/N1 plane forms dihedral angles 0.5 (4)° and 8.8 (3)°, respectively, with the C12/N1/C1/N2 and C4—C6/C8/C9 planes. The dihedral angle between the dihydropyridine and chlorophenyl rings is 88.6 (2)°.

In the crystalline state, centrosymmetrically related molecules form dimeric pairs through N—H…O hydrogen bonding. In addition, weak C—H…O hydrogen bonds are observed (Table 1).

Experimental

The title compound was prepared by the reaction of 4-chlorobenzaldehyde (0.141 g, 1 mmol), 3-(5,5-dimethyl-3-oxocyc-lohex-1-enylamino)propanoic acid (0.211 g, 1 mmol) with malononitrile (0.066 g, 1 mmol) in ethylene glycol (2.0 ml) at 393 K under microwave irradiation (maximum power 200 W, initial power 100 W) for 6 min (yield: 0.324 g, 85%; m.p. 539–541 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution (95%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$ or $1.5U_{eq}(C)$. Owing to the large number of weak high-angle reflections, the ratio of observed to unique reflections is low (40%).

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

6-(4-Chlorophenyl)-9,9-dimethyl-3,7-dioxo-2,3,4,6,7,8,9,10-octahydro- 1*H*-pyrimido[1,2-*a*]quinoline-5-carboni-trile

Crystal data	
C ₂₁ H ₂₀ ClN ₃ O ₂	$F_{000} = 800$
$M_r = 381.85$	$D_{\rm x} = 1.341 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 539-541 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.378 (5) Å	Cell parameters from 981 reflections
b = 10.131 (5) Å	$\theta = 2.8 - 25.1^{\circ}$
c = 18.143 (9) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 97.406 \ (8)^{\circ}$	T = 298 (2) K
$V = 1891.6 (17) \text{ Å}^3$	Block, colourless
Z = 4	$0.25 \times 0.20 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3340 independent reflections
Radiation source: fine-focus sealed tube	1323 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.086$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.946, \ T_{\max} = 0.969$	$k = -12 \rightarrow 11$
9514 measured reflections	$l = -11 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.064$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.035P)^2 + 2.4335P]$ $wR(F^2) = 0.223$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.02 $\Delta \rho_{\text{max}} = 0.24 \text{ e} \text{ Å}^{-3}$ 3340 reflections $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$ 244 parameters Primary atom site location: structure-invariant direct

methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic of	or	equivalent	isotropic	disp	lacement	parameters	$(Å^2$	')
				1		1	1			1	1	/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C11	0.3493 (2)	0.23717 (18)	1.02619 (13)	0.1007 (8)
N1	0.2832 (4)	0.8830 (4)	0.7610(2)	0.0424 (11)
N2	0.4295 (4)	1.0056 (5)	0.8419 (3)	0.0555 (13)
H2	0.4812	1.0035	0.8829	0.067*
N3	0.3718 (5)	0.9263 (5)	1.0240 (3)	0.0665 (15)
01	-0.0473 (4)	0.6160 (4)	0.8355 (2)	0.0685 (13)
O2	0.5347 (6)	1.1839 (5)	0.8066 (3)	0.124 (2)
C1	0.3300 (5)	0.9138 (5)	0.8329 (3)	0.0413 (13)
C2	0.2840 (5)	0.8574 (5)	0.8912 (3)	0.0404 (13)
C3	0.1777 (5)	0.7546 (5)	0.8833 (3)	0.0389 (13)
Н3	0.1056	0.7882	0.9079	0.047*
C4	0.1294 (5)	0.7358 (5)	0.8030 (3)	0.0377 (13)
C5	0.0121 (6)	0.6585 (6)	0.7855 (3)	0.0499 (15)
C6	-0.0426 (6)	0.6372 (7)	0.7057 (3)	0.0667 (19)
H6A	-0.0897	0.5543	0.7015	0.080*
H6B	-0.1040	0.7072	0.6904	0.080*
C7	0.0588 (6)	0.6346 (6)	0.6547 (3)	0.0593 (17)
C8	0.1424 (5)	0.7582 (5)	0.6664 (3)	0.0468 (14)
H8A	0.2194	0.7464	0.6419	0.056*
H8B	0.0942	0.8323	0.6429	0.056*
С9	0.1836 (5)	0.7907 (5)	0.7464 (3)	0.0390 (13)
C10	0.4522 (7)	1.0985 (7)	0.7915 (4)	0.073 (2)
C11	0.3695 (6)	1.0920 (6)	0.7190 (4)	0.0691 (19)
H11A	0.4141	1.1322	0.6809	0.083*

H11B	0.2894	1.1402	0.7215	0.083*
C12	0.3395 (6)	0.9501 (6)	0.6998 (3)	0.0619 (18)
H12A	0.2786	0.9456	0.6546	0.074*
H12B	0.4186	0.9052	0.6909	0.074*
C13	0.3332 (6)	0.8955 (5)	0.9641 (4)	0.0499 (15)
C14	0.2223 (5)	0.6256 (5)	0.9202 (3)	0.0382 (13)
C15	0.1652 (5)	0.5741 (5)	0.9779 (3)	0.0491 (15)
H15	0.0986	0.6211	0.9956	0.059*
C16	0.2031 (6)	0.4553 (6)	1.0105 (3)	0.0565 (16)
H16	0.1608	0.4214	1.0485	0.068*
C17	0.3035 (6)	0.3881 (6)	0.9865 (4)	0.0597 (17)
C18	0.3645 (7)	0.4362 (7)	0.9297 (4)	0.078 (2)
H18	0.4328	0.3898	0.9134	0.094*
C19	0.3238 (6)	0.5540 (6)	0.8970 (4)	0.0638 (18)
H19	0.3652	0.5866	0.8583	0.077*
C20	0.1454 (7)	0.5117 (6)	0.6716 (4)	0.085 (2)
H20A	0.2109	0.5099	0.6388	0.128*
H20B	0.0930	0.4336	0.6643	0.128*
H20C	0.1861	0.5152	0.7221	0.128*
C21	-0.0004 (7)	0.6253 (7)	0.5739 (3)	0.080 (2)
H21A	0.0676	0.6237	0.5428	0.120*
H21B	-0.0553	0.7005	0.5614	0.120*
H21C	-0.0510	0.5460	0.5665	0.120*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1119 (16)	0.0658 (12)	0.1244 (19)	0.0265 (11)	0.0145 (14)	0.0319 (12)
N1	0.043 (3)	0.041 (3)	0.045 (3)	-0.012 (2)	0.015 (2)	-0.003 (2)
N2	0.048 (3)	0.054 (3)	0.060 (3)	-0.016 (2)	-0.010 (3)	0.014 (3)
N3	0.066 (4)	0.073 (4)	0.058 (4)	-0.009 (3)	-0.003 (3)	-0.016 (3)
01	0.060 (3)	0.094 (3)	0.054 (3)	-0.032 (2)	0.017 (2)	0.004 (2)
O2	0.122 (5)	0.110 (4)	0.127 (5)	-0.079 (4)	-0.029 (4)	0.038 (4)
C1	0.039 (3)	0.032 (3)	0.052 (4)	-0.007 (2)	0.003 (3)	0.000 (3)
C2	0.040 (3)	0.036 (3)	0.043 (3)	-0.007 (2)	-0.003 (3)	-0.006 (3)
C3	0.038 (3)	0.038 (3)	0.042 (3)	-0.010 (2)	0.012 (3)	-0.006 (3)
C4	0.037 (3)	0.042 (3)	0.035 (3)	-0.009 (2)	0.004 (3)	-0.008 (3)
C5	0.048 (4)	0.059 (4)	0.043 (4)	-0.010 (3)	0.008 (3)	0.000 (3)
C6	0.060 (4)	0.090 (5)	0.049 (4)	-0.029 (4)	0.005 (4)	-0.002 (4)
C7	0.074 (4)	0.061 (4)	0.043 (4)	-0.027 (3)	0.006 (3)	-0.009(3)
C8	0.050 (3)	0.050 (3)	0.042 (4)	-0.009 (3)	0.011 (3)	-0.005 (3)
C9	0.037 (3)	0.038 (3)	0.044 (3)	-0.005 (2)	0.010 (3)	-0.003 (3)
C10	0.063 (5)	0.066 (5)	0.086 (5)	-0.020 (4)	-0.003 (4)	0.008 (4)
C11	0.061 (4)	0.069 (5)	0.078 (5)	-0.018 (3)	0.009 (4)	0.012 (4)
C12	0.063 (4)	0.064 (4)	0.061 (4)	-0.014 (3)	0.017 (4)	0.012 (3)
C13	0.053 (4)	0.045 (4)	0.051 (4)	-0.003 (3)	0.006 (3)	0.001 (3)
C14	0.040 (3)	0.038 (3)	0.038 (3)	-0.004 (2)	0.011 (3)	-0.004 (3)
C15	0.060 (4)	0.046 (3)	0.045 (3)	0.003 (3)	0.019 (3)	0.007 (3)

C16	0.057(4)	0.061.(4)	0.054 (4)	-0.003(3)	0.018(3)	0.006(3)
C17	0.057(1) 0.062(4)	0.001(1) 0.049(4)	0.068 (4)	0.005(3)	0.016(3) 0.005(4)	0.000(3)
C18	0.002(1)	0.079(5)	0.000(1)	0.020 (4)	0.003(1)	0.010 (4)
C19	0.072(3)	0.079(3)	0.071 (5)	0.020(1)	0.028(4)	0.019 (4)
C20	0.113 (6)	0.062(5)	0.086 (6)	-0.013(4)	0.020(1) 0.034(5)	-0.013(4)
C21	0.108 (6)	0.002(0)	0.045 (4)	-0.044(4)	0.006 (4)	-0.015(4)
021	0.100 (0)	0.007 (0)	0.015 (1)	0.011(1)	0.000 (1)	0.010 (1)
Geometric para	imeters (Å °)					
	<i>interers</i> (11,)		C 0			
CII—CI7		1.731 (6)	C8–	C9		1.496 (7)
NI—CI		1.368 (7)	C8–	-H8A		0.97
N1—C9		1.394 (6)	C8–	-H8B		0.97
N1—C12		1.485 (6)	C10-			1.476 (9)
N2—C10		1.354 (7)	CII-			1.503 (8)
N2—C1		1.384 (6)	CII-	HIIA		0.97
N2—H2		0.86	CII-	HIIB		0.97
N3-C13		1.152 (/)	C12-	HI2A		0.97
01		1.239 (6)	C12-	—H12B		0.97
02—C10		1.224 (7)	C14			1.371 (7)
CI = C2		1.343 (7)	C14			1.388 (7)
C2—C13		1.408 (8)	C15-			1.376(7)
$C_2 = C_3$		1.511 (6)	C15-	-HI5		0.93
C_{3} $-C_{4}$		1.492 (7)	C16			1.363 (7)
$C_3 = C_{14}$		1.513 (7)	C16	—H16		1.2(((8)
C3—H3		0.98	C1/-			1.300 (8)
C4—C9		1.331 (6)	C18-			1.370 (8)
C4 - C5		1.448 (7)	C18-	—H18		0.93
C_{3}		1.300 (8)	C19-	—П19 Н20А		0.93
C_{0}		1.469 (6)	C20-	—п20А 1120В		0.96
C6 H6P		0.97	C20	—H20Б Н20С		0.90
C0—110B		1.517(8)	C20	H21A		0.90
C7 = C21		1.517(8) 1.523(7)	C21			0.90
C7 - C30		1.523(7) 1.543(9)	C21	—H21C		0.90
$C_{1} = C_{20}$		1198(4)	02-			122.7 (6)
C1 = N1 = C1		119.0(4)	02- N2-	-C10C11		122.7 (0)
$C_{1} = 11 = 0.02$		121.3 (5)	C10	-C11-C12		109.1 (6)
$C_{10} - N_{2} - C_{1}$		121.5(5)	C10			109.9
C10 - N2 - H2		117.3	C12	—С11—Н11А		109.9
C1 - N2 - H2		117.3	C10			109.9
C2-C1-N1		122.4 (5)	C12			109.9
C2-C1-N2		121.9 (5)	H11	A—C11—H11B		108.3
N1—C1—N2		115.7 (5)	N1-	C12C11		110.7 (5)
C1—C2—C13		120.0 (5)	N1-			109.5
C1—C2—C3		123.2 (5)	C11-	—С12—Н12А		109.5
C13—C2—C3		116.8 (5)	N1-	C12H12B		109.5
C4—C3—C2		109.3 (4)	C11-	—C12—H12B		109.5
C4—C3—C14		111.5 (4)	H12	A—C12—H12B		108.1
C2—C3—C14		112.0 (4)	N3-	C13C2		179.1 (7)

С4—С3—Н3	107.9	C15—C14—C19	116.9 (5)
С2—С3—Н3	107.9	C15—C14—C3	121.9 (5)
С14—С3—Н3	107.9	C19—C14—C3	121.2 (5)
C9—C4—C5	118.5 (5)	C14—C15—C16	122.2 (5)
C9—C4—C3	124.7 (4)	C14—C15—H15	118.9
C5—C4—C3	116.7 (5)	C16—C15—H15	118.9
O1—C5—C4	120.8 (5)	C17—C16—C15	119.2 (6)
O1—C5—C6	119.7 (5)	С17—С16—Н16	120.4
C4—C5—C6	119.4 (5)	C15-C16-H16	120.4
C7—C6—C5	113.1 (5)	C16—C17—C18	120.7 (6)
С7—С6—Н6А	109.0	C16—C17—Cl1	119.2 (5)
С5—С6—Н6А	109.0	C18—C17—Cl1	120.0 (5)
С7—С6—Н6В	109.0	C17—C18—C19	119.2 (6)
С5—С6—Н6В	109.0	C17—C18—H18	120.4
Н6А—С6—Н6В	107.8	C19-C18-H18	120.4
C6—C7—C21	111.8 (6)	C18—C19—C14	121.7 (6)
C6—C7—C8	109.5 (5)	С18—С19—Н19	119.1
C21—C7—C8	109.8 (5)	C14—C19—H19	119.1
C6—C7—C20	109.3 (5)	С7—С20—Н20А	109.5
C21—C7—C20	107.1 (5)	С7—С20—Н20В	109.5
C8—C7—C20	109.2 (5)	H20A—C20—H20B	109.5
C9—C8—C7	113.7 (4)	С7—С20—Н20С	109.5
С9—С8—Н8А	108.8	H20A-C20-H20C	109.5
С7—С8—Н8А	108.8	H20B-C20-H20C	109.5
С9—С8—Н8В	108.8	C7—C21—H21A	109.5
С7—С8—Н8В	108.8	C7—C21—H21B	109.5
H8A—C8—H8B	107.7	H21A—C21—H21B	109.5
C4—C9—N1	120.2 (5)	C7—C21—H21C	109.5
C4—C9—C8	123.4 (5)	H21A—C21—H21C	109.5
N1—C9—C8	116.4 (4)	H21B—C21—H21C	109.5
O2—C10—N2	121.2 (7)		
C9—N1—C1—C2	0.5 (8)	C3—C4—C9—N1	-7.2 (8)
C12—N1—C1—C2	-180.0 (5)	C5—C4—C9—C8	-10.5 (8)
C9—N1—C1—N2	179.5 (4)	C3—C4—C9—C8	172.9 (5)
C12—N1—C1—N2	-1.0 (7)	C1—N1—C9—C4	2.8 (7)
C10—N2—C1—C2	-156.1 (6)	C12—N1—C9—C4	-176.7 (5)
C10—N2—C1—N1	25.0 (8)	C1—N1—C9—C8	-177.3 (5)
N1—C1—C2—C13	-178.2 (5)	C12—N1—C9—C8	3.2 (7)
N2-C1-C2-C13	2.9 (8)	C7—C8—C9—C4	-14.4 (8)
N1—C1—C2—C3	0.4 (8)	C7—C8—C9—N1	165.7 (5)
N2—C1—C2—C3	-178.5 (5)	C1—N2—C10—O2	172.9 (6)
C1—C2—C3—C4	-3.9 (7)	C1—N2—C10—C11	-5.4 (9)
C13—C2—C3—C4	174.8 (5)	O2-C10-C11-C12	147.4 (7)
C1—C2—C3—C14	120.3 (5)	N2-C10-C11-C12	-34.3 (8)
C13—C2—C3—C14	-61.1 (6)	C1—N1—C12—C11	-37.7 (7)
C2—C3—C4—C9	7.3 (7)	C9—N1—C12—C11	141.8 (5)
C14—C3—C4—C9	-117.1 (5)	C10-C11-C12-N1	53.8 (7)
C2—C3—C4—C5	-169.4 (4)	C4—C3—C14—C15	-118.8 (5)
C14—C3—C4—C5	66.2 (6)	C2—C3—C14—C15	118.4 (5)

C9—C4—C5—O1	-173.6 (5)	C4—C3—C14—C19	61.4 (6)
C3—C4—C5—O1	3.3 (8)	C2—C3—C14—C19	-61.5 (7)
C9—C4—C5—C6	2.4 (8)	C19-C14-C15-C16	-1.8 (8)
C3—C4—C5—C6	179.3 (5)	C3-C14-C15-C16	178.4 (5)
O1—C5—C6—C7	-153.3 (6)	C14-C15-C16-C17	2.1 (9)
C4—C5—C6—C7	30.7 (8)	C15—C16—C17—C18	-1.3 (10)
C5—C6—C7—C21	-174.9 (5)	C15—C16—C17—Cl1	-178.8 (5)
C5—C6—C7—C8	-53.0(7)	C16—C17—C18—C19	0.2 (11)
C5—C6—C7—C20	66.7 (7)	Cl1—C17—C18—C19	177.6 (5)
C6—C7—C8—C9	45.4 (7)	C17—C18—C19—C14	0.1 (11)
C21—C7—C8—C9	168.5 (5)	C15-C14-C19-C18	0.6 (9)
C20—C7—C8—C9	-74.3 (6)	C3—C14—C19—C18	-179.5 (6)
C5-C4-C9-N1	169.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N2—H2…N3 ⁱ	0.86	2.24	3.059 (7)	159
C12—H12B···O2 ⁱⁱ	0.97	2.29	3.005 (8)	130
C16—H16···O1 ⁱⁱⁱ	0.93	2.57	3.480 (7)	167
\mathbf{C}_{1}	1/2 - 12/2. (:::)			

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, y-1/2, -z+3/2; (iii) -x, -y+1, -z+2.

